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Deep learning processor based on Si

1 Backg round programmable photonic integrated circuit

Technology issues of Si programmable PIC

g s R o GPT-3 Electrical circuit Phase shifter hE e (B (B Power monitor
anguage phaGoZero® / P 2 e £ !
E * Vision AlphaZero © * J Megatron- 7 e TH s

Games
E Neural machine® 7/ 235

Speech translation ®/ @ gpT2
e Other

fo
©" & BERT
Doubling ever N W aw o = I I @ <L = s o . .
A. Mehonic and A. J. Kenyon, “Brain-inspired computing (5’ 2 monthgs / I =¥ 2 i) | g ! | LY O PN a1V = = = Res ponSIVIty
needs a master plan,” Nature, vol. 604, no. 7905, pp. 255— o /®ResNets i il : r An N R = e ortion loce
260, Apr. 2022. , e ) il P oW L/ 2 O/E it
AlexNet 9 Optical | . KR = _
@ @ . conversio
input

4 Doubling every i) '@ L T = n

)\ 3.4 months = [md o iRty : e . Low-power O/E

/
Deep belief networks é
@®

. - | | bty i ‘5:555: ' ‘ : = ‘ I ‘;I .CL. ;E! -y — — — — - - - - - - - - - - - —— = -
Doubling every 24 months @~ = OIE
(Moore’s law) _ - © -1
TD-Gammom v2.1 |

- MLP-based = r - o - .
C o LeNet-5 _ - - Bﬁ_STM neural network breaks MZI SWItCh sz == - - ::::::::::::' . i ; ¢ Power Consumptlon L.
: _ - ~& for speech 1 B . Speed * ResponSIVIty

-

e . GPU Y. Sten ot al, Dospleaming it NV - s \\ 1hermo-optic  Capacitance

§ NETtal.L( _ - - computing coherent nanophotonic circuits,” Nat. h h.f
ALVINN Pre-GPU computing Jun. 2017. pnase sni ter

o ° RNNC])cor speech Photonics, vol. 11, no. 7, pp. 441-446, ~
ook . . . . . . . | S E—— Heterogeneous integration of llI-Vs and phase
1985 1990 1995 2000 2005 2010 2015 2020 2025 . > oy ¥ i J T oy = .
— change materials (PCMs) on Si PIC

Computing performance (petaFLOP days)

« The computing performance for generative Al is increasing at a MAC operation can be performed in the optical domain using Si
rate that exceeds semiconductor miniaturization (Moore's Law). programmable PIC.
« A new computing technology is essential for Al. High-speed, low-power, low-latency computing is expected.
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2. Optical phase shifter
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Y. Miyatake et al., “Proposal of low-
loss non-volatile mid-infrared optical
phase shifter based on Ge,Sb,Te;S,,”
IEEE Trans. Electron Devices, vol. 70,
no. 4, pp. 2106-2112, Apr. 2023.
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- The power consumption of conventional thermo-optic (TO) phase shifter is too large for n-type InGaAsP membrane is bonded on Si waveguide with Al,O; gate N e

large-scale programmable PIC. dielectric. _ _ .
- Low-power optical phase shifter is essential. Electron accumulation at the IlI-V MOS interface enables efficient, low-loss Low-loss optical phase shifter was demonstrated using a
optical phase shift. newly developed PCM, GeSbTeS.

The power consumption is 106 times smaller than that of TO phase shifter. 0.29 dB for n phase shift, which is the lowest among the
PCM phase shifters.
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3. Optical power monitor 4. O/E converter I1-V/Si hybrid photodetector

1.2

' Simulation This work
o *

\-/ o Ref
Further ]
improvement 0

Ref. [2] .
Ref. [4];

l1I-V/Si hybrid waveguide-coupled phototransistor InGaAs 30 nm

650 Ultrathin InGaAs
membrane

—
o

Electrode

e
i
(&)
o
o

600}

S

nP Wi T |
. phOtOFET i RS 550 i
InP/Si hybrid MOS optical phase shifter '

- °
Ref. [3] Ref. [5]

Ni/Au contact
Si0;  |nGaAs

Responsivity (A/W)
© ©°
~ (0))

-
<
(o))

o
N

B2 R |
[Saisas - .
s si | “ | Ref.[6] e ® GePD -
Si slof » el - . ®mvPD
nm
| Slot waveguide it 0.1 1.0 10.0 100.0

Phase shifter voltage (V) Device Capacitance (fF)

T. Ochiai et al., “Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic T. Akazawa, K. Sumita, S. Monfray, F. Boeuf, K. Toprasertpong, S. Takagi, M. Takenaka, “Transparent in-line optical power monitor integrated with MOS optical T. Akazawa et al., “Low-Capacitance Ultrathin InGaAs Membrane Photodetector on Si Slot Waveguide
circuits operating at near-infrared wavelengths,” Nat. Commun., vol. 13, no. 1, p. 7443, Dec. 2022. phase shifter using InP/Si hybrid integration,” European Conference on Optical Communication (ECOC2023), We.D.4.5, Glasgow, UK, 1-5 October 2023. Toward Receiverless System,” IEEE Trans. Electron Devices, vol. 69, no. 12, pp. 7184—7189, Dec. 2022.

5001 ¢

s |

Optical transmission (W)

—
<
~
o
o

- InGaAs channel is bonded on Si waveguide with Al,O, gate dielectric. * InGaAs membrane is bonded on Si slot waveguide.
 Effective gating of InGaAs through Si waveguide gate electrode enables high responsivity of 106 A/W without gate metal loss. * Due to the optical confinement in the gap of the slot waveguide, the absorption in InGaAs absorber is
« Monolithically integrated with MZI switch as an in-line optical power monitor. enhanced, resulting in high responsivity (1 A/W) and low parasitic capacitance (1.9 fF).

Low-power O/E converter is expected by removing power-hungry electrical amplifier.

4. Deep learning processor Summary

 Heterogeneous integration of lll-Vs and PCMs enables high-performance
Inference and low-power deep learning processor.
« Using crossbar circuits, both learning and inference can be performed
in the optical domain.
« Si programmable PIC can be used for various applications including
deep learning, quantum computing, communication, and sensing.
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S. Ohno, R. Tang, K. Toprasertpong, S. Takagi, and M. Takenaka, “Si Microring Resonator Crossbar Array for On-Chip Inference and Training of the Optical Neural Network,” ACS Photonics, vol. 9, no. 8, pp. 2614—-2622, Aug. 2022.

* Microring resonator crossbar is proposed as a deep learning accelerator.

« MAC operation for inference can be performed by injecting WDM optical signal from the left side of crossbar.

« MAC operation with transpose matrix can be performed by injecting error signal from the top side of crossbar, enabling learning through
on-chip backpropagation in optical domain.




	スライド 1

