Feature Article

第1回 堀場雅夫賞 受賞者論文

電位差法による超臨界水溶液の pH測定装置の開発

陶 究

超臨界を含む高温高圧水反応場は、物質合成・変換・改質の新規反応場として近年積極的に注目を集めている。これまで、我々は高温高圧水反応場の溶液環境に関する情報を把握する上で、最も有効なpHの測定手法の開発を進めてきた。特に、電位差測定用電気化学セルについて装置防食・絶縁に加え、厳密な温度・圧力制御、電極の選定・設計、電極サイズ・表面積の決定、参照液と被検液の接触手法・液絡部の開発、圧力シール等について詳細に検討を進めた結果、超臨界域においても、常温常圧と同じ理論を用い、電位差法によるpH測定を可能とする装置を開発したので報告する。

はじめに

超臨界流体とは物質に固有の臨界温度t。臨界圧力P。以 上の温度 圧力の状態にある非凝縮性流体である。超臨 界流体は温度 圧力を操作変数とすることにより 密度 を気体の領域から液体の領域に至るまで連続的に制御 することが可能である。単一溶媒にも関わらず大幅な 溶媒特性の変化が期待できることから 超臨界流体は 従来の溶媒の概念を打破する新たな溶媒と捉えること ができる。

特に超臨界水(P_c=22.1 MPa, t_c=374 °C)は 温度もしく は圧力を操作することで溶媒の極性を大きく制御でき る点に特徴がある^[1]。水の誘電率は常温常圧の80程度 に対し 臨界点近傍では2から20程度であり 誘電率か ら見た場合 超臨界水は高温で安定な唯一の有機極性 溶媒とみなせる。しかも 温度 ,圧力の操作により誘電 率を変化させることで反応平衡の制御が可能となる。 このような超臨界水の持つ反応の制御性は溶媒として の水の汎用性を示すもので ,その工学的利用は革新的 なプロセス開発に繋がるものと期待される。

近年、このような超臨界水の特性を積極的に利用した 難分解性有機化合物の完全酸化(SCWO)²¹,無触媒有 機合成³¹,廃棄バイオマスからの有用化学原料の回収⁴¹, 更にはナノサイズ金属酸化物の水熱合成¹⁵¹といった新 規化学プロセスの開発に関する研究が進められてい る。その実用化には反応場における酸 塩基反応 ,金属 イオンの加水分解反応及び金属酸化物の溶解反応に代 表されるイオン反応平衡の理解が重要である。それら の平衡定数データの蓄積には ,水素イオン活量を直接 評価できる電位差測定手法は極めて重要な測定手法と 考える。しかし ,従来 臨界点近傍を含む超臨界領域に おける水の特性の制御性を直視した研究例が僅少で あったことから ,この領域における電位差測定手法は 確立していない。

高温水溶液のpH測定手法としては、銀-塩化銀電極に始まり、白金水素電極、YSZ膜金属酸化物電極といった電 位差測定手法に加え、最近ではプローブ分子を用いた *in-situ* UV/Vis分光分析法といったようにそれぞれ数種 の報告例がある。本稿では、超臨界領域を含む高温高圧 水溶液中での電位差測定による水素イオン活量の評価 手法として、水素共存という制約があるものの電極反 応に関与する成分(H₂, H⁺)及び電極(白金)が熱的に安 定であることから高温での測定に適している白金水素 電極を用いたpH測定手法に焦点を絞り、著者らの開発 した電位差法による超臨界水溶液のpH測定装置⁽⁶⁾を中 心に紹介する。

既往の高温高圧水中での電位差測定

飽和蒸気圧下での電位差法によるpH測定装置は 通常 回分式装置 図1 を用い 高圧容器内に参照液部と被検 液部を設け、テフロン製多孔質膜を液絡として用いて いる[7]。しかし、テフロンの耐熱が300°C程度であり、代 用可能なセラミックス膜等も開発されていないことか ら 更に高温域での使用は困難である。この課題を解決 すべく提案されたのが 流通式手法⁸³である。従来の手 法は、T字型流路を有するセルを用いる[9110]。セル両端 がそれぞれ参照液 被検液の導入部となり 常温で供給 された溶液は所定温度まで加熱後、セル中央部で接触 し、下部より排出される。参照電極は温度・圧力変動の 影響を受けにくいセル入口付近の常温部に 指示電極 はセル中央部付近の高温部に設置される。電極は共に 白金水素電極を用いる。本手法により 物理的な液絡を 必要とせず電位差の測定が可能となった。しかし 溶液 が対極周囲へ流入するため 測定電位が変動し正確な 測定が困難であった。また 測定電位に 電極間の温度 差に起因する熱拡散電位及び電極間距離 流量の関数 である流動電位が影響し、その除去のために流量依存 性を測定し流量依存性を関数近似し 流量ゼロの値を 算出する必要があるため多大な時間を必要とすると いった多数の開発課題を残していた。

図1 回分式電位差測定装置の概略図

電位差法による超臨界水溶液の 高精度なpH測定装置の開発

超臨界水溶液のpH測定装置の開発の上で 装置開発と 合わせて 装置の健全性評価の際に不可欠となる各種 物性値(解離定数,イオンの電気伝導度・輸率,溶解度, 相平衡)の精度が極めて重要となる。超臨界水溶液中に おいて 酸としてはHCI 無関係塩としてはNaCIが文献 値が最も豊富である。本節では,まず物性値の評価につ いて説明し,その後,開発した装置について紹介する。

物性値の評価

超臨界水溶液系においても、白金水素電極を用いた電 位差測定における電位差 Eは、ネルンストの式に基づ き式(1)で記述できる。

$$\Delta E = \frac{RT}{F} \ln \frac{m_{H^+, test} \gamma_{\pm, test} a_{H_2, ref}}{m_{H^+, ref} \gamma_{\pm, ref} a_{H_2, test}} + \Delta E_{LJ} \qquad \dots (1)$$

ただし、上述した既往の流通式装置^[9110]では更に流動 電位 熱拡散電位が加算される。なお ,m_{H+}は水素イオ ン濃度 , _{*}は平均イオン活量係数 ρ_{H2} は水素の活量 ,

*E*_Lは液間電位を示す。また、添字ref及びtestは参照液 及び被検液を表す。ここで_{*}及びa_{H2}は、参照液及び被検 液中に同濃度の無関係塩添加することで一定とみなせ る。また *E*_Lは、ヘンダーソンの式により溶液中のイオ ン種濃度及び個々のイオンの電気伝導度データにより 評価できる。そこで、測定電位の評価には溶質の解離平 衡定数及び電気伝導度のデータが不可欠となる。超臨 界水中における反応平衡を含むイオンの挙動が、理論 的な解析に基づき、温度と水の密度の関数により良好 に記述できることを考慮し、最近報告された塩酸 (HC1)塩化ナトリウム(NaC1 等の解離定数及びイオン の電気伝導度データについて、温度と水の密度の関数 として整理した^[6]。なお、電気伝導度についてはイオン 対についてのデータから各イオンの輸率を用いて個々 のイオンの値を算出した。

流通式電位差測定装置の測定精度の改良

従来の装置における課題を解決すべく、作製した装置 を図2に示す。装置は高耐食性のハステロイC-276製(内 径4 mm)である。装置内壁の防食、電極 - セル間の絶縁 材として、従来の装置ではジルコニア(ZrO₂)チューブ が使用されていたが、本ラインは溶液の過熱部として の役割も担っていることを考慮し、効果的に溶液の加 熱を行うべく、高耐食性の絶縁材で、熱伝導度も高い アルミナ(Al₂O₃)チューブ(内径2 mm)を使用した。 電極には白金線(外径0.5 mm)を用い,コイル状に巻いた 先端の測定部を白金黒処理し残りの高温部分はAl₂O₃ チューブ(外径1 mm,内径0.6 mm)で,低温部分は熱収 縮チューブで被覆した。図2(a)中の破線楕円部 電極部 の詳細を図2(b)に,また,電極の詳細を図2(c)に示す。 なお本装置の電極の構成は式(2)の通りである。

 Cu | Pt | H₂ | 参照液 | 被検液 | H₂ | Pt | Cu
 ...(2)

 参照液:HCl(10⁻⁴ mol/kg) + NaCl(10⁻¹ mol/kg)

 被検液:HCl(10⁻⁴ mol/kg or 10⁻³ mol/kg)+NaCl(10⁻¹ mol/kg)

実験は 参照液及び被検液をそれぞれHPLCポンプによ リそれぞれ同一流量で供給し,セル左右からセル内に 導入した。その後,所定温度まで加熱後,セル中央部の 電極部を通過させ,この間の電位差を測定した。両溶液 は接触後,冷却,減圧後回収した。

実際の実験に先き立ち、まず各測定温度において、セル 内の温度分布及び電極表面積と平衡電位到達時間の関 係を解析し、電極位置及びサイズを決定した。参照電極 を指示電極と同様にセル中央部近傍の高温部に設置す ることで、電極間距離を従来の80 cmから1 cmへと短縮 した。これにより、熱拡散電位及び流動電位の除去に成 功し、任意の流量での測定が可能となった。

電極間の体積についても従来の10.1 cm³から0.1 cm³へ と改良し 溶液の置換速度が向上した。また 溶液の対極 周囲への流入により生じる濃度変動を防止するため た ルの形状をT型からY型に変更し 更に孔径0.8 mmのオ リフィスを新たに作製し 電極先端部へ設置した。これ により 測定電位の標準偏差を従来の2.3 mVから0.4 mV へと大幅に抑制することに成功した。

以上,今回作製したセルを用いることで,1条件のデー タ測定に要する時間を,従来の数十時間から数時間に 短縮することに成功した。実際に,HCl+NaCl水溶液系 について温度19.6~392.9 ,圧力0.1~29.8 MPaの範 囲で電位差測定を行った。電位差測定における電位応 答の一例を図3に,測定電位差の流量依存性を図4に示 す。なお、図4中の実線は文献値より式1)に基づき評価 した電位差を示す。測定電位より算出した被検液中の pHは,平衡定数の文献値活量係数式,電荷収支物質収 支を用いて算出した値とpH単位で誤差±0.02以内で一 致した。これは高温高圧下での測定精度としては十分 な誤差範囲と考えた。

以上本手法により超臨界水溶液中の正確なpHの直接 測定が可能であると考える。

図3 電位差測定結果の一例

図4 測定電位差の流量依存性

超臨界水中での酢酸及び硫酸水溶液の 電位差測定

開発したシステムを用いて,超臨界水中での酢酸 (HAc)¹¹ 汲び硫酸(H₂SO₄)¹² 水溶液の電位差測定を行 い解離定数を決定した。測定において,参照液をHCl+ NaClとし被検液をHAc+NaCl及びH₂SO₄+NaClとし た。一例として,決定した酢酸の解離定数の温度・圧力

図5 決定した酢酸の解離定数

おわりに

本稿では、白金水素電極を用いた超臨界条件を含む高 温高圧水溶液の電位差測定法における現状について、 我々の成果を中心に紹介した。今後は水素ガスや無関 係塩等の共存という制約を必要としないYSZ膜金属酸 化物電極について、超臨界水溶液系での使用を視野に 入れた開発や、更に、セルを小型化し電気化学マイクロ セルとすることで、更なる測定精度の向上や測定時間 の短縮を目的とし、研究を進める予定である。本手法に より、超臨界水中での種々の溶液の水素イオン活量を 評価し、超臨界水中でのイオン反応平衡データの蓄積 が進み、高温高圧水中でのイオン反応平衡の把握が加 速し、溶液化学の確立が達成されることを期待する。

謝辞

本研究を進めるにあたり,東北大学大学院環境科学研 究科の新井邦夫教授,多元物質科学研究所の阿尻雅文 教授,超臨界溶媒工学研究センターのRichard Lee Smith Jr.教授に意義深い討論と助言を受けたことに謝意を表 する。また本研究に携わった塚越政行氏,松浦勇希氏, 村田研自氏,内田宗宏氏,宇佐見俊彦氏,大内文章氏,南 公隆氏と共同研究できたことに感謝する。

依存性を図5に示す。決定した解離定数は、亜臨界領域 において文献値と良好に一致した。また、超臨界水中に おいても解離定数を精度良く決定できた。決定した解 離定数は、圧力一定下では温度の上昇と共に、温度一定 下では圧力の減少と共に低下した。これは水の誘電率 の減少に起因している。

参考文献

- [1] K. Arai, T. Adschiri, *Fluid Phase Equilib.*, 158-160, 673(1999).
- [2] S. F. Rice and R. R. Steeper, *J. Hazardous Mater.*, **59**, 261 (1998).
- [3] Y. Ikushima, K. Hatakeda, M. Arai, J. Am. Chem. Soc., 122, 1908 (2000).
- [4] M. Sasaki, H. Hattori, K. Arai, Cellulose Communications, 10(5), 63(2003).
- [5] K. Sue, K. Kimura, K. Arai, *Mater. Lett.*, **58**, 3229 (2004).
- [6] K. Sue, M. Uchida, T. Usami, T. Adschiri, K. Arai, J. Supercrit. Fluids, 28, 287 (2004).
- [7] D. A. Palmer and D. J. Wesolowski, Geochem. Cosmochim. Acta, 57, 2929 (1993).
- [8] F. H. Sweetson, R. E. Mesmer, C. F. Baes Jr., J. Phys. E, 165(1973).
- [9] S. N. Lvov, X. Y. Zhou, and D. D. Macdonald, J. Electroanal. Chem., 463, 146(1999).
- [10]K. Sue, K. Murata, Y. Matsuura, M. Tsukagoshi, T. Adschiri, K. Arai, Rev. Sci. Instrum. 72(12), 4442 (2001).
- [11] K. Sue, T. Usami, K. Arai, J. Chem. Eng. Data, 48(4), 1081(2003).
- [12] K. Sue, M. Uchida, T. Adschiri, K. Arai, J. Supercrit. Fluids, **31**, 295(2004).

陶 究 Kiwamu Sue

東北大学大学院 環境科学研究科 助手 博士(工学)